回到顶部

基于TVM的深度学习编译研究

Fri, 16 Jun 2023 14:30:00 GMT+08 ~ Fri, 16 Jun 2023 16:30:00 GMT+08
中科图云

Hide

Tickets
    Please select the order price
    More Details
    Hide...

    报告摘要:

     在各种设备上部署深度学习模型已经成为一个重要的话题。机器学习编译是一个新兴领域,它利用编译器和自动搜索技术来加速AI模型。机器学习编译带来了一系列独特的挑战:新兴的机器学习模型;增加的硬件特化带来了多样化的加速原语;灵活性和性能之间的紧张关系不断增长。

    解决这些挑战需要在系统的不同层次上需要多层抽象和相应的优化。在这次演讲中,我将谈论我们设计抽象的经验。然后,我将讨论由多个抽象本身带来的新挑战,以及我们最近通过统一表示来应对这些挑战的努力。


    报告人简介:

    冯思远是上海交通大学博士生,本科毕业自上海交通大学 ACM班。目前是Apache TVM的PMC,并与社区其他多位PMC和committer一并推动TVM的生态和演进开发,包括但不限于:TensorIR、Meta-Schedule、TVMScript和TVM Unity


    MLC.AI 社区成立于 2022 年 6 月,并由 Apache TVM 主要发明者、机器学习领域著名的青年学者陈天奇,带领团队上线了 MLC 线上课程,系统介绍了机器学习编译的关键元素以及核心概念。

    TVM是一个端到端的机器学习编译框架,它的目标是优化机器学习模型让其高效运行在不同的硬件平台上。

    前端支持:TensorFlow, Pytorch, MXNet, ONNX等几乎所有的主流框架。

    后端支持:CUDA,ROCm,Vulkan,Metal,OpenCL,LLVM,C,WASM及不同的设备平台(GPU,CPU,FPGA及各种自定义NPU)。

    当然深度学习编译加速生态已经从萌芽阶段到开始繁荣生长的阶段。但是抛开具体实现而言,现在深度学习编译生态围绕着四类抽象展开:

    计算图表示(computational graph):计算图可以把深度学习程序表示成DAG,然后进行类似于算子融合,改写,并行等高级优化。Relay, XLA, Torch-MLIR,ONXX 等基本都在这一级别。

    张量程序表示(tensor program): 在这个级别我们需要对子图进行循环优化,对于DSA支持还要包含张量化和内存搬移的优化。

    算子库和运行环境(library and runtime): 算子库本身依然是我们快速引入专家输入优化性能的方式。同时运行环境快速支持数据结构运行库。

    硬件专用指令 (hardware primitive) :专用硬件和可编程深度学习加速器也引入了我们专用硬件张量指令的需求。


    报名如有问题,可咨询18810632700


    嘉宾头像

    冯思远

    博士


    Event Tags

    Recently Participation

    • 于建志
      Register

      (1年前)

    • du.wu
      Register

      (1年前)

    • AICloud
      Like

      (1年前)

    Perhaps you'd be interested in

    Question

    All Questions

    Haven't posted any questions yet, grab a sofa!

    OrganizersMore

    中科图云

    中科图云

    北京中科图云科技有限公司专注于人工智能/云计算/大数据/高性能方向的技术培训。致力于通过对行业前沿技术的持续创新解读,为相关方向的研究机构和行业用户,提供从训练到推理的一站式人工智能云计算应用服务解决方案/教学实训平台

    WeChat Scan

    Share to WeChat→

    Event Calendar   Dec
    M T W Th F Sat Sun
    25 26 27 28 29 30 1
    2 3 4 5 6 7 8
    9 10 11 12 13 14 15
    16 17 18 19 20 21 22
    23 24 25 26 27 28 29
    30 31 1 2 3 4 5

    免费发布